Reaction mechanism of pyridoxal 5'-phosphate synthase. Detection of an enzyme-bound chromophoric intermediate.

نویسندگان

  • Thomas Raschle
  • Duilio Arigoni
  • René Brunisholz
  • Helene Rechsteiner
  • Nikolaus Amrhein
  • Teresa B Fitzpatrick
چکیده

Vitamin B6 is an essential metabolite in all organisms. De novo synthesis of the vitamin can occur through either of two mutually exclusive pathways referred to as deoxyxylulose 5-phosphate-dependent and deoxyxylulose 5-phosphate-independent. The latter pathway has only recently been discovered and is distinguished by the presence of two genes, Pdx1 and Pdx2, encoding the synthase and glutaminase subunit of PLP synthase, respectively. In the presence of ammonia, the synthase alone displays an exceptional polymorphic synthetic ability in carrying out a complex set of reactions, including pentose and triose isomerization, imine formation, ammonia addition, aldol-type condensation, cyclization, and aromatization, that convert C3 and C5 precursors into the cofactor B6 vitamer, pyridoxal 5'-phosphate. Here, employing the Bacillus subtilis proteins, we demonstrate key features along the catalytic path. We show that ribose 5-phosphate is the preferred C5 substrate and provide unequivocal evidence that the pent(ul)ose phosphate imine occurs at lysine 81 rather than lysine 149 as previously postulated. While this study was under review, corroborative crystallographic evidence has been provided for imine formation with the corresponding lysine group in the enzyme from Thermotoga maritima (Zein, F., Zhang, Y., Kang, Y.-N., Burns, K., Begley, T. P., and Ealick, S. E. (2006) Biochemistry 45, 14609-14620). We have detected an unanticipated covalent reaction intermediate that occurs subsequent to imine formation and is dependent on the presence of Pdx2 and glutamine. This step most likely primes the enzyme for acceptance of the triose sugar, ultimately leading to formation of the pyridine ring. Two alternative structures are proposed for the chromophoric intermediate, both of which require substantial modifications of the proposed mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Npgrj_nchembio_93 425..430

The predominant biosynthetic route to vitamin B6 is catalyzed by a single enzyme. The synthase subunit of this enzyme, Pdx1, operates in concert with the glutaminase subunit, Pdx2, to catalyze the complex condensation of ribose 5-phosphate, glutamine and glyceraldehyde 3-phosphate to form pyridoxal 5¢-phosphate, the active form of vitamin B6. In previous studies it became clear that many if not...

متن کامل

Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis.

Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by...

متن کامل

Catalytic mechanism of glycogen phosphorylase: pyridoxal(5')diphospho(1)-alpha-D-glucose as a transition-state analogue.

Pyridoxal(5')diphospho(1)-alpha-D-glucose was used to reconstitute glycogen phosphorylase beta (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) from rabbit muscle, replacing the natural pyridoxal 5'-phosphate coenzyme. Incubation of the reconstituted enzyme alone resulted in the gradual cleavage of the synthetic cofactor to pyridoxal 5'-phosphate, which caused slow re...

متن کامل

Function of the phosphate group of pyridoxal 5'-phosphate in the glycogen phosphorylase reaction.

To understand the catalytic mechanism of glycogen phosphorylase (EC 2.4.1.1), pyridoxal(5')phospho(1)-beta-D-glucose was synthesized and examined as a hypothetical intermediate in the catalysis. Pyridoxal phosphoglucose bound stoichiometrically to the cofactor site of rabbit muscle phosphorylase b in a similar mode of binding to the natural cofactor, pyridoxal 5'-phosphate. The rate of binding ...

متن کامل

Detection of reaction intermediates during human cystathionine β-synthase-monitored turnover and H2S production.

Human cystathionine β-synthase (CBS), a novel heme-containing pyridoxal 5'-phosphate enzyme, catalyzes the condensation of homocysteine and serine or cysteine to produce cystathionine and H(2)O or H(2)S, respectively. The presence of heme in CBS has limited spectrophotometric characterization of reaction intermediates by masking the absorption of the pyridoxal 5'-phosphate cofactor. In this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 9  شماره 

صفحات  -

تاریخ انتشار 2007